
^d4:>

'*<«
APR 1 7

D

ISIS: A System for Fault-Tolerant
Distributed Computing*

KenneUi P Birman

TR 86

Mi

TEGMlClAi: REPORT

7.

MK- - -

aca, New Yorit
aÄIJ

(3

DT1C
ELECTE

APR 1 ? 1986

P
D

ISIS: A System for Fault-Tolerant
Distributed Computing*

Kenneth P. Birman

TR »6-744
April 1986

Department of Computer Science
Cornell University
Ithaca, NY 14853

APPROVED FOR PLBLIC RELLMSE

DISTRIBUTION UNLIMITED

.'

This rtnck '-L- Mirrmteil hv me DHtense ^ilsanced ii.ttheiin n Pfnitcts Auftwv IüOD' iiiuct \RP\ inier S.]7H. i ntin'

\lt)A9<i;MS-(olj;. m<l bv ihe NatiimalScifiKc FiiuiKiaiion uiuiei uram Di H--i-HJ5S.\ Tin-vicvi,^. mtih.n- nui

tlmlillU> i 'UlUinuti HI '.hi.- ii-pmi. ,uf thllSitf ul Ihr .lulhiiis .mil »hliulil nut ilf i iii-t; ■.! .1 i- in I(UM; Df-n.ii i.Mimi' I

Dftenstf ("isain.i. |liiiii >., 'ii ilerision, .

>^>^^v:^^XvS-:-vv:>/.>>^:^:^:v;v^

SECURITY CLASSIMCMTIQN OP THIS PACIE

S
REPORT DOCUMENTATION PAGE /|^/f /^ ^^O

mA \ la REPORT SICUWTY CLASSIFICATION

IS C Unclassified

form Approved
OMSNo 0704 018S
fxp Dttt JunlO 1986

lb RESTRICTIVE MARKINGS

2» SECURITY CLASSIFICATION AUTHORITY

2b DECLASSIFICATION/DOWNGRADING SCHEDULE

3 DISTRIBUTION/AVAILABILITY OF REPORT

Approved for Public Release
Distribution Unlimited

i PERFORMING ORGANUATION REPORT NUMBER(S)

TR86-744

5 MONITORING ORGANIZATION REPORT NUMBER(S)

6a NAME OF PERFORMING ORGANIZATION
Kenneth Birman, Dept. of CS
Cornell University, Ithaca, NY

6b OFFICE SYMBOL
(if ippi'tabie)

7a NAME OF MONITORING ORGANIZA'iON

Defense Advanced Research Projects Agency/IPTO

6c. ADDRESS (Oty, State, and ZIP Code)

Dept. of Computer Science, 405 Upson Hall
Cornell University
Ithaca. NY 14»^

7b ADDRESS (Oty, State, and/(P Code)
Defense Advanced Research, Project Ageu-y
Attn: TIO/Admin, 1400 Wilson Blvd.
Arlington, VA 22209

3a NAME OF FUNDING/SPONSORING
ORGANIZATION

DARPA/IPTO

8b OFFICE SYMBOL
(if app//tab/e)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUM3ER

ARPA order 5378
Contract MDA-903-85-C-0124

8c ADDRESS (City State, and ZlPCodt)
Defense Advanced Research, Project Agency
Attn: TIO/Admin., 1400 Wilson Blvd.
Arlington, VA 22209

10 SOURCE OF FUNDING NUMBERS

PROGRAM
ELEMENT NO

PROicCT
NO

TASK
NO

WORK UNIT
ACCESSION NO

11 TITLE (/nc/ude Security C/aMiiicationJ

ISIS: A System for Fault-Tolerant Distributed Computing
Approved for Public Release
Distributed Unlimited

12 PERSONAL AUTHOR(S)
Kenneth P. Birman

;3a TYPE OF REPORT
Special Technical

13b TIME COVERED

FROM TO

14 DATE OF REPORT (Year, Month, D*y)

April 1986
15 PAGE COUNT

37
16 SUPPLEMENTARY NOTATION

17 CÜSATI CODES

FIE £. GROUP SUB-GROUP

18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

w) The ISIS system transforms abstract type specifications into fault-tolerant distributee
implementacions, while insulating users from the mechanisms whereby fault-tolerance is
achieved. This paper discusses the transformations that are used within ISIS, methods for
achieving improved performance by concurrently updating replicated data, and user-level
issues that arise wbpn ISIS is employed to solve a fault-tolerant distributed problem. We
describe a small set of communication primitives upon which the system is based. These
achieve high levels of concurrency while respecting ordering requirements imposed by the
caller. Finally, the performance of a prototype is reported for a variety of system loads 4^
configurations. In particular, we demonstrate that performance of a replicated object in
ISIS can equal or exceed that of a nonreplicated object.

KEYWORDS: Fault tolerant distributed computing, replication, concurrency, atomic
broadcast, resilient objects, performance.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT

0 UNCLASSIFIED/UNLIMITED D SAME AS RPT D DTIC USERS

21 ABSTRACT SECURITY CLASSIfICATlON

22a NAMF OF REiPONSlBlE INDIVIDUAL 22b TELEPHONE (inc/ude AreaCc.de) 22c OFfiCE SYMBOL

Db FORM 1473,8a MAR 83 APR ed'tion may be used until exhausted

All other editions are obsoleie
SECURITY CLASSIHCATIQN Q* [HIS PAGE

■ P» .'• ■:^-^: ::-:;•:• ^>..'>-iKv:-:--:-
^Vwlti'i iJi ^''-- JV, i»,)

■■'..'. P , ^>; il'Ai^liCÜi^i^'"-" .v.v^Vp ■m

Hue pas«

ISIS: A SYSTEM FOR FAULT-TOLERANT DISTRIBUTED COMPUTING1

Kenneth P. Bfrman
Department of Computer Science

Cornell University, Ithaca, New York

Accesion For

NTIS CRA&I
DTIC TAB
U;.annouMced
Justification

i
u
D

Diit ibutio.il

Availability Cedes

Avail ar(d/or
Speciai

'This wcuk was supported by the Defense Advanced Research Projects Agency (DoD) 'iada ASPA order 5378,
Contract MDA903-85-C0124, and cy the National Science Foundation under grant DCR-84L2582. The views, qpimoo»
and !ind<ngs ccntained in this report are those of the authors and should not be cumtmed as JI offidal Dtpartroem of
Defense posiaoo, policy, or dedsicn.

■A.-lt —# **M a^J^J^i^Ji^J? - k> - •. ■ iMt^mAi, .-^Jb^: v.%

SI

i

Abstract page

ABSTRACT

The ISIS system transforms abstract type spedficationt into fault-toierant distributed imple-
mentations, while insulating users from the medümfams «tereby fault-tolerance is achieved. This
paper discusses the transfonüations that are used within ISIS, methods for adaeving improved
performance by concurrentty •-■pdating replicated i«ta, and user-level issues that arise when ISIS is
employed to solve a fault-tolerant distributed probL^a. We describe a small set of communication
primitives upon which the system is based. These achieve high levels of concurrency while
respecting ordering requirements impose' by the caller. Finally, the Performance of a prototype
is reported for a variety of system loads and configurations. In particular, we demonstrate that
performance of a replicated object in ISIS can equal or exceed that of a nonreplicated object.

Keywords: Fault tolerant (hstributsd computing, replication, concurrency, atomic broadcast, resi-
lient objects, performance.

;=v>v« *«V''.■■
,■ - ■ rY» f ^.TJ, *** mtmi ,'. Jf- -TlV* ^'-i. J*. -."m -V I

1. Introduction

Our bask premise is that the complexity of fault-tclcrsst distributed programs precludes

their design and development by typical programmers. This complexity seems to be inherent: sys-

tems achieve fault-toleranoe through redundant data or proxastng, and the distributed agtw.iient

and synchronization protocols needed for this purpose are hard to implement. Moreover, high

levels of concurrency are required for reasons of performssce, making it difficult to reason about

correctness in the preseose of failures. Alternatives to direct implementation are needed if fault-

tolerant systems are to become widely available.

The ISIS project seeks to address this need by automating the transformation of fault-

intoUrant program specifications into fault-tolerant implementations, which we caQ resilignt objects.

In [Birman-a] we first reported this work; the present paper extends the previous discussion, pro-

viding considerable additional detaS and perfonnanoe data. '.SIS works by replicatmg code and

data while ensuring that the resulting distributed program gives behavior indistinguishable from a

single-site instantiation of the original specification. Although many systems have been built to

assist in the construction of distributed and fault-tolerant software, including ARGUS [Liskov-b],

EDEN [Lazowska], CLOUDS [Allchin], LOCUS [POpek], TABS [Spector], and the TANDEM sys-

tem [Bartlett], ISIS goes furthest in insulating users from the details of f.vilt-tolerant program-

ming. Moreover, ISIS places few restrictions on programs. In contrast, other systems that exe

cute fault-intolerant specifications fault-toleranüy, such as CIRCUS [Coope-] and AURAGEN

[Borg], are restricted to program that are are fully deterministic given the jpedftcation. Tn partic*

ular, concurrent calls to ehe program are only allowed if the calling sequence is fired. This tort of

restriction effectively disallows the design of a fault-tolerant service that ./iD oonciirrentiy be used

by more than one caller - the primary use to which resilient objects will be put.

Rather than implementing a specialized distributed protocol for each algorithm .iscded in the

system. ISIS has been built using a communication layer supporting a variety of broadcast2' proto-

Pagel

•'■. ••.-^'..<V■-"*■<^>-'fgre:<^-^',^\•■^ S ' 3^ »-•- '^ '^ J.' ■■"--.I^ _% ^iJ.-.' V' 'J'J * 1^ .^^ ^S ^^ ^ ..J? . , ^'..T.'.'-^"- «'-V - ^"-V -V---."-^'.^'-S'. -'-■,

cols. While broadcast primitives have been known in the literature for some time [Schneider]

[Chang] [Cristian], the primitives we describe are integrated with a failure detection mrdumwTn

and provide unusually flexible delivery ordering properties. Within ISIS, algorithms are specified

as sequences of calls to these protocols, making it feasible to reason about the correctness of our

code. ISIS would uivc been far more complex, and our code man* emv prone, had it been built

directly from a lower-level communication medumimi sudi as «syudironous message ptnsmg.

It is sometimes argued that fault-tolerance is best app.-oached by employing specially

designed redundant hardware. We believe that software faulMolemvx would be an issue even if

this were done. Crashes often stem from user error and obscure bugs in the operating system and

»•oewted «ypprvrt «nftware; nr in high level appliration software. Mnreovor. even special

bardwarc defÄüda oa a stable power vrstts mä asr oradttloaiag, ^ inay ',iave ^ I* s'nit down

from twoe to time. Tte, Mtirei seian inpvitablff in any distribiited systen, and it is important to

nummize the lesulting disruption. Morecn'cr, we will show that the problem oH detectiog and

reacting to failure is, in its essence, not very different from that of tolerating more beniga events,

such as online reconfiguration and synchronization in parallel algorithms. By developing a tech-

nology for software fault-tolerance, we also gain mechanüms for addressing diese other problems.

The structure of this paper is as follows. The next section introduces resilient objects,

reviews the object specification language, and shows how an application program can be con-

structed using ISIS. The example presented, a distributed calendar service, required just a few

days to design, code, and debug. At a more technical level, we then show how ISIS compiles a

specification into a fault-tolerant implementation using the communication primitives mentioned

above. The paper concludes by discussing the performance of our communication primitives,

some sample objects, and of the overall system as the load and configuration are varied.

'Hce, the term "broadcast" refers to a software protcxoJ for sending informacan from a single source to a set cf
destination processes. Such broadcasts night take advantage of an ethemet broadcast capability, but can be implement-
ed using ether imcrcannecnon devices as well.

Page2

■ w'.''.-'.-",- ■.•■-■■,.- '-'Vivv ■•,-'■., ■.■ v ■ n' -"■■>N ■'" ■",' •'" »"••'• ■.''• > ,Ni^
^ • ■ 'N •"■ .'■>>.-^^%■^>^v-.^.^\^.^^^^.'^»^C^l'^s'^J.'■■^^.'^ ^NV " v-vNA »ii ■H ■--- » ■ m m ■ i ■ -*'■ . --.. . —*:■ ~r . ^*. . ^ _ rf_^_^i ^ ^ - * ~ * ,- fc ^ - * A ._A . «Jl .„ _* , a .

2. RedUent objects

7575 extends a conventional operating system by introducing a new programming abstraction,

the resiliera object. Each resüisnt object is an abstract type that provides tome service at a set of

sites, where it is represented by components to wbidi requests can be issued using remote pro-

cedure calls (RFC) [BüTCIJ. A typical ISIS application is constructed by developing conventional

front-end programs and interfacing them to one or more such objects. Hie programmer cam also

define new, TTW«»'"^, reuliiar. objects Ü suitable onca do not aueady eadst A resilient object

can be used for several purposes: as a specialized database for fault-tolerant informauca storage,

as a source of status information through which processes monitor actions underway at remote

sites and detect failures or feooverks. and as an intermediary for controlling and synchronizing

distributed computations.

The translation of a non-distributed specification into a resilient object is based on several

assumptions about the enviromneot in which ISIS will be used and what resiliency sboulu mean in

this context. These are addressed bslow.

2.1. Faffinr« wmunptioiH

ISIS runs on dusters of computer systems communicating over a local area network. The

network should not be subject to partitioning. Since local networks are often built from ethemets

and token rings, cc.isisting of interconnected dusters of sites, this assumption is reasonable. In

case partitioning does occur, MS has been designed to pause when fewer than half the sites in a

duster are known to be operational, thus avoiding incorrect actions. Issues relating to rdiabe

operation in the presense of partitioning failures are being addressed by some of our colleagues

[El Abbadi-a] [B Abbadi-b]. We assume that the only way sites fail is by halting (crashing)

[Schlictingj; tolerance of snore malidous failures would lead to rapid increases in piotocii cosia ui

many levels of the system [Strong]. Failure dstectr n and a collection of fault-tolerant broadcast

protocols are implemented in software on top of the bare network.

Page:

n1^ ■%'■'- •.'rVviiVi'-"-'n .V- '-" '-"■ •«'-^■" •-'.'■-".'^"-". •-'i •-' "-"■ '."^v\.'."_-..". '-• .-' • •. t-' »-•■ J-IJ^ ■... ■, - •'.■.• ._; A.-, -.-i 3_Vv-, fcV-^a t "i i I » V V« 1 > "i n ^ « ir ■ \t Vi it mf-ti

2.2. Propcrlk» of reritteut objects

Throughout this paper, the term resiliency is used to denote k-resiliency. A k-resüient object

satisfies the following properties:

1. ConflbtaDcy. The external behavior of an is like that of a non-cKstributed one wfaicfa executes

requests sequentially and to oompledoft, with so interleaving of execütiom. An object may

also csplement distributix) synchromzation operation that introduoe adtütional consistency pro-

perties.

2. Avaüabßlty. Let / denote the number of components of an object that fail simultaneously. If

/ s *, then opfrational components continue to accept and prooess requests.

3. Progrew. Ufsk, tljen operatiottf are executed to completion, despite failures.

4. Iccovery. Because ISIS supports replication, two cases can be distinguished:

c. Partial. If / s it, a failed component restarts automatically when its site recovers.

b. Total iSf>k, failed components restart autcmatically when all the failed sites recover.

It should be stressed that k-resiiiency is a much stronger property than resiliency of the sort

discussed in [Svobodova] or [Liskov-b]. In both of these papers, resiliency denotes the ability of a

system to remain in an internally consistent state during normal execution and to automatically

recover into such a state after a failure has been resolved. Our approach reflects the nd-Htmal

assumption that data will be replicated, making it feasible (ami desirable) to continue to provide

services even though a failure fm occurred.

2.3. Loglcai ezecc&n modd

Wc dsdded to model the execution of operations on resilient objects by transactions

[Eswarenj. Although this precludes supporting some interesting "non-tramaddunal" resilient

typ«, it is convenient because it permits a programmer to specify resilieat objects in a straightfor-

ward manner, using a lock-based concurrency control algorithm to enforce toe transactional

abstraction. A non-transactional model would force the programmer to become much more

Pa«e4

^v'vft
j^*V'f-_''.™^':.-_''l?LV:_'j;_lA_'.^_*JLr_*.'-''i' *■'* 'm* ',' "m" ri' II' '■' '■ 'r' '-" •-'■'-"'- '■ - V ■ "■. - ^ - '- "» -'-. -'» -".--J -'» ..'j..'.-. .'M. .'., .N -^- -> .V ■'i

involved in the details of ryndbronization.

Specifically, the executkm of each operation gives rise to a transaction, which begins (impli-

citly) when the procedure ^edfying the operation is invoked and commits (uDplidtly) when that

procedure returns a result. A procedure can also abort, which explicitly causes its actknts to be

roDed back. Since procedures can ca!l one another, <xi model is essecdally that of Moss' nested

warMoixf [Mess], although * wider variety of lock types are svaflatue than Mots discussed (Sec.

5.1).

liskov has observed [Liskov-b] that a tnechanian is needed for initiating top-level transac-

tions from within other transactions, in order to avoid severe inefficiency. A top-level transaction

is one that was invoked by a non-transactional caUcr: any transaction invoked witNn some otbei

transaction is »aid to be a subtransaction, and commits or aborts relaHve to its parent transaction.

Liskov points to a case in winch the garbage ooOected during the execution of a subtransaction

must be reinstalled if its caller aborts, and argues that this inefficiency can be avoided if a mechan-

ism for initiating a top-Ievd transaction from within other transactions is available. Top-levd

transactions have other uses as well, notably because they pennii increased concurrency when tran-

sacdonaily updating a concurrently accessed data structure. Here, an update may affect both the

linkage fields of the data stricture itself and the contents of some record, and it is desirable to

view these as independent events. By using top-level transactions to update link-fields, other con-

currently executing operations are permitted to "pass through" a node while it is still being

updated, without waiting until the update transaction has terminated. Operations that try to

aaxss the record contents, however, block until the update tramadibn commits or aborts. For

these reasons, we included a top-level transaction mechanism in 7575.

Another possibility was to support an u.tdo mechanism, which would permit the programmer

to associate an arbitrary undo action with each operation. If it becomes necessary to abort an

operation, the corresponding undo action is executsd. Unliie the sysiem-levei abort feature now

supported in ISIS, an undo mechanism could be used to back out of actions that have external

Page?

side-effects. However, abort is rare in our prototype, and we dcddsd not to ouplcaient undo

act ions at the pv^scr.' time.

3. CH?>ct spedflartioQi laogDage and ^fitmi intertact

Is this secdon we review the language used to specify ISJ5 obrcts, Uie interface provided to

external colic*. A. cmmiaid languagr, «i also avaQabie, and is used to control tar ISIS system

itself during execution, but is not described in detail here.

3.1. RcaJllent objects

The k-resiUtnt types are a spcdal class of abstract data types [Lixkov-a]. Each resüient object

imtanti&tes a resilient type «r>d i» aoes»ble to holders of a capability on it; these are open in that

they can be freely copied or stored [Dietrich]. Resilient type spedüestiom have tho foDuwing

parts:

1. Declarations for the resiliem data encapsulated by the type, consisting of one or more

indefinite-length arrays or heaps3 of resilient records.

L Type definiäons for the parameters and results of operations.

3. Procedures tot manipulating resilient data. These can be given attributes such aa create (exe-

cuted when an instance of an object is created), entry (accessible to external caBers), and read-

only (does not update resilient data).

Resilient procedures ase coded using a version of the C programming language. All of C is

available, as are many operating system calls. The language has been augmented to include a

multi-tasking facility for internal concurrency and to provide several new statement types:

"Sequentially allocated data structures tend to have "hoc spcts" which are frequently accessed, redudnj potennal
concurrency [Gawlickj. The heap management facility supports dynamic aliocanoQ and deallocation at resilient recardi
within traiuacdons, avoiding a ccmmcc source of hot-spots. Heap management it dene using per-transacoan allocatian
and free b'r.cs, which are updated when a heap allocancn or tree is done and when a subcransacdon censnts nr aborts.

Page6

1. VO statements. Resilient data is accessed using read and wräe statements, which can also

spsdfy a lode to acquire before perfonning the access. By forcing the programmer to use a

sped si notation when accessing resilient data, the most natural programming style tends to

minimize those operations - and this is also the most efficient way to use ISIS.

1. Remote procedure calls. A fiatibie RFC medumisci is provided, mducfing nested, recursive,

and Bsyncfarooous RPCs, as well as RPCs in yitkh the functkm to caü is a paramster. It

should be noted, hmwm, ''iiat there are some technkal nsttrictiom on thr use of recursive äad

asynchronous RPCs that stem from the model, hence it is not dear whether typical users will

make use cf either feature. RFC is also used to as an interface to most *SIS system functions.

3. Abort return. A nomal return from a resilient procedure U intcrprctsd as a commit of the sub>

ti-amactioü that was being executed. In an abort return, the effects of the procedure (and any

that it has invoked) are erased.

4. Cobegin. A set of branches (statements, which do not contain return or abort statements) are

specified for concurrent execution. The cobegin terminates when all its branches terminate.

Each cobegin branrh executes as s task within a single address spact. A more uecble cobegin,

which might provide some form of explidt cmtroi over concurrent processing at multiple sites,

is under consideration. The statement is currently used V> keep a computation active while

some branch is blocked (e.g. when acqvlnng a lock). ISIS assumes that the branches of a cobe-

gin do not compete for locks on the same data items.

5. Toplevel. The statement is executed KS a top-Ievd transaction.

3-2. Featuna far monitoring rtmote aUlvllka

Although resilient objects provide a simple mechanism for oonocaling replication and distri-

bution, they will also be used to explicitly synchronize and control distributed computations. As a

result, features have been added to the language that permit a computation to pause unti.' an

update to a replicated variable has been received, or until one of the sites at which an object

Page?

reside» failure or recovers. A predsfincd SITES variable can be read to detennine the fuD set of

sites at which an object resides. A VIEW variable gives the subset of SITES that ee currently

r^eraücmal. By combining these mechanisms, it is easy to build objects with very sophisticated

distributed functionality.

to ISIS

Non-resilient dient» interact with rssSkat objects through an interface that rssenrbles the

one used by objects to communicate with one another, by issuing RFC calls to objects on which

they hold or can obtain a capability. ISIS supports a globally accessible name space object, which

has a weU-kmron capability, and can be used to look up a desired object using a symbolic name.

Normally, cadi iXPC issued by a dient executes as a top-level transaction. A dient can.

however, exp'idtly combine a series of requests into a transacnon. To do this, thi program first

invokes a BECSN pcrxxdure, then perform*, the operctions, and then invokes COMMIT or ABORT.

A client can only havr one active transaction at a time.

If a client fails wnilc a transaction iit progress, the d-fauJi action is *o terminate the tran-

saction. Observe that the semantics of termination in this case differ from those for abort. This is

because an abort is explidtly executed by the computation to be aborted, whereas when a client

rails it may be accessary to interrupt a comp-'tatic: that is still in progress, or blocked (perhaps

deadlocked). To this end, ISIS supports a software kE signal, which can be issued by a client pro-

cess, and is automatically issued when a dient fails before terminating a transaction. KD cannot

be caught or ignored, and temmates a transaction by halting it and its subtrausactions and then

aborting them.

Transactional sy? tms that lack a mechanism for ensuring continued progress despite failure

generally implement a variant of UD to tcrmiuate transactions that ut: interrupted when a site at

which ihey executed fails (this gives rise to the orphan temineaion problrm discu.'ised in [Moss]

[Liikcv-b]). Software built using these systems must avoid irreversible actions, like cuvement of

a mechanical arm or dispensing cash from a machine, because the only time such an action can

P*ge8

safely be taken is during the tcp-lcvd ocs^it (whrn kID can no longer oocur). Unfortunately,

this tactic makes it hard to implement certain types of operation, for example ont that moves a

mechanical arm while monitoring and reacting to sensor feedback. Here the desired behavior

could only be nhudned by breaking the Operation into a ssr nf separate transacdons. The pro-

grammer would then implement his own algorithms to cope wiu failures, a noctrivial undertal ig.

Because it uses a progress nwdMBi«, ISB never tnvoka UB automatically unless a dieot-levd

transaction fails. Una, an Operation s>icfa as this is issily inqdenented within & resilient object.

Clearly such an object must be deadtack-fr^e, but this is a minor restriction (for example, lodes

can simply be acquired in a fixed order).

4. ProgHumiKng iti ISIS

This section summcrizes the devrI'^intait of a distribuud appointcjcKt and calecdar systen,

vhi-'i was undertaken to exercise ISIS and to gain some programming experience using resilient

objects. The calendar combines data storage with a dynamic monitoring capability: users who

chose to «üäpla) their schedule on a terminal are shown changes as they oocur.

To develop the calendar program, we began by designing and implementing a conventional

single-user program with the same functional decomposition that we intended to employ in the

fault-tolerant distributed version. This program contains an interactive display module, a com-

mand interpreter, and a collection of procedures for managing the calendar data structure. The

data structure consists of an array of pet-user information (PUI) blocks and, for each user, a

Unked-list of appointment schedules. The command interface permits a user to define a new

group (a set of users and a reason for their meetings) or schedule a meeting, sn* can provide

advice to a dsvi- who wishes to schedule a meeting with some group but is unsure what time to

pick. A graphic display of s. user's schedufc is clso provided.

Having completed this initial version of the calendar, we müdiled the calendar dtitabase into

a resiiient object. Tiie object supports operations to fetch or update the PUI for a user 01 group,

fetch or update the entry for a week, and to pause until a change to the schedule for the current

\an is detected (this enables the program to refresh the display when the schedule is changed by

some other user).

Concurrency control proved to be straightforwad to implement. We divided commands into

two types: read-only requests and update requests. Each is aecuted as a transaction. Loddng is

done on just the PUI blocks, and these are locked in a fixed order, a strategy which is deadlock

free.

For reasons of performance, it was desirable to cache infonnadoc in the interactive frost-

end prograim. A version number was therefore associated ^vith eacli FIJI block and incremented

by update transactions. All calendar information except the FUI is cached, Each tim*; a FIJI block

is referenced, any invalided cache entries for that user ate (fiscarded. In practice it seems likely

that cache entries will aarmaDy be accurate simply because calendars are consulted more fre-

queatly then they are updated

To summarize, we found it easy to implement a nontrivial, distributed program using ISiS.

The result is not of production quality, but the remaining issues are in the calendar interface, oot

the feasibility of implementing the calendar, and the program was never subject to concurrency

related bugs or problens with failure handling and recovery. IUS would ratainly not have been

the case in a development starting with the bask: UNIX interprocess comnnsiication primitives. In

fact, our program was converted by the author from a single-site version into a distributed one

within a few days. Moreover, the performanoe of the resulting system is reasonable: although

there may be a delay of several seconds before mfoimatioü from an complex update is reflected ic

remote copies of the calendar, users of the system are unaware of this, since thär local calendar

reflects updates rapidly. Ii effect, the program gives a speedy i rspcm« and then completes the

the requsst in »he "backgmunu".

5. Rontfane lasoa

In this section we rum to the runtime mechanisms that underlie the implementation of a resi-

lient object. Ihese arc nontriviai because of the many "phya> V events that can occur during

?aae 10

*£l^Ä£**\t.^m''-'•*~*-'''-'''~*'~•'•'■*-*,'*~•'-:^-^'^:^•--,^ '•* *" '•"' "^'"-•'i'--i> ■'-''■ -' .1. -*. - ^ -g.. -: - :j; -X ■ ■ ■ A- I

secuticn. Our treatment begms by surveying the algorithms without aridrpwing details relating to

their implementatioQ using broadcast primitivu. Sec. 5.2 introduces the primitives actually

employed within ISIS, and Sec 5.3 then shows how some of the algorithms of Sec 5.1 can be effl-

dently implemented using them.

5.1. Fmtt-tofannt encntka of a rtqnot

We use the term task to refer to the physical execution of a request by one of the. com-

ponents of a resflieat object, designated the coordüuaor. Components are identical: any can be

coordinator for any request, which tends to distribute processing load. The components that are

passive for a request are designatrd as cohorts and serve as backups - one takes over if the coor-

dinator fails. Recall from Sec 2.2 that a task must satisfy several properties to produce a correä

logical execution. Ws now consider these properties individually.

5.1.1. CnuslateraCT

Coaemms? control fBerüstein] is not automatic in ISIS, because it is difficult to infer an

efficient concurrency crmfrol algorithm without bxK.'ledge of the semantics of operations. There-

fore, 7575 requires that the programmer provide a single-site ooneurreoey control algorithm, which

is transformed into a distributed one. The dass of concurrency control algorithms supported are

tbr. conflict serializatiun algorithms [Papa], of which 2-phasc locking is the \y--< known and essisst

to cods. Two lock classes are supported (see bdew); within each dass, read, promotable

(exclusive) read, previous committed version read, and «rite locks cm be requested.

Ths previous committed version iead-lock is unusual, and deserves further explanation.

Locks of this sort permit a read-only transaction to execute corsurrently with on* that is updating

some of the data items it accesses. Denote such a read-only transaction R and an update transac-

tion with which it conflicts U. If Ä reqxicsts a read previous lock on some item jt, that lock can be

grar.ted even if U already has wriie-locked x, and the subsequent read request by R satif r "d from

the la%t committed version of .v. Should U attempt to commit before ä does so, U cu^t now be

/orwd to wsit until R commits and releases its locks. "Hisn, if R reads other records that U is

Page 11

updating, it will consistently see the venions committed before V began extaitmg. In effect, R

has been serialized before U although it started execution after U, and neither /? nor C is forced

to block until U reacfas its commit point. A similar form of concurrency control was described in

[Wcihl], where hybrid atomicity was introduced to capture the behavior of a special "timestamped"

concurrency control method that also permits readonly transactions to run "sing previous versions

of data items. Since many transartions ve read-only: previous copy locks should be very valuable

in systems such as ISIS.

The two lock dass« supported by ISIS are:

1. Nested 2-phasc locks. When a subtransaction commits, the lock is retained by its parent tran-

saction [Moss]; when the top-level commits, n is released.

2. Local 2-phasc locks. When the transaction or subtransaction holding the lock commits, it is

released.

Nested 2-phase locks are easiest to work with, and probably suffice for most users. On the

other hand, by using local locks in conjunction with top-level transactions, it is poss tie to implc-

ment highly concwrent data structures, and this approach was used successfully within the ISIS

namespace object. The comter^tion of lock dasses and types makes ISIS excsptiomJly flexible at

the level of woncurrency control, and we believe that effident concurrency control algorithms can

be devised for most objects.

5.1.2. AvaflabUttT

Availability is satisfied by replic>*V!g the code and data for each resilient object. Since data

accesses are transactioual, each item is represented as a stack of versions [Moss], replicated at Jt+i

or more sites. A read-one copy, write-all (operational) copies rule is used when locking or eocsss-

ing replicated data. An item is updated by pushing a new version on all copies of the corresp

ing stack, or replacing the top-most version if one already exists for the transactijn fii/ing the

update Abort i» implonented by pepping the top versioa, and commit by popping the tcp two

Pip 12

■ a», v..v., -■>..,-.

sind then pushing the Gist again. The best known alternative to the rsad-one, write-aD approach is

to employ a quorum access rule, where both read and write requests are satisfied by anoBwing

multiple copies [Giffordl [HerlihyJ, We ejected this because the latency inclined while waiting

for a quorum of responses from remote sites reduces the level of concurrency below tiiat winch we

attain using the rcad-cne write-all approach, where computation can proceed without delay as soon

as the local copy of a data hem has been accessed (evidence to support this condusion is given in

Sec 7). Qurorum methods are preferable if network partitioning is common, because they

increase availability [HcrHhy] [B Abbacfi-a] [El Abbadi-b], however this is not felt to be an issue

in the cnvironmcBi lor which ISIS was designed.

S.U. ProgrcM

ISIS ensures that operations progress to completion using a transactional checkpoint-restart

scheme [Birrean-a] [Birman-b]. Related work on non-transactiona! checkpoint and rsatart appcu*

in [Toueg][Chandy]. Each RFC is h-oadesst to the operational components of an object, and con-

stitutes an initial checkpoint. If a coordinator fails whfte executing the request, one of its cohorts

takes over as the new coordinator. It restores its copy of the object to the state at the time of the

checkpoint, discarding versions of data items that were written by the trsnsaction being restarted

(this requires no communkatior. *vith other components or objects). The actions of the failed

coordinator are then repeated in restart mode in order to reestablish the state that existed at the

time of the failure.

When an operation is reissued in restart mode, it dearly shriuld not be fö-e*eüucd - other-

wise, the system state could become inconsistsnt (e.g. if an increment were done twice). To avoid

this, the lesula returned by completed operations are replicated in addition to the updates thsy

perform on replicated date. Spedficüly, when a coordinator finishes executing a request it broad-

casts tne result to its cohorts as well as to the caller. The cohorts retain copies of each result

under the TID of the transaction, constituting a final checkpoint. Because the same TID is used

during restart (see Sec 5.3 for details), when the operation is reissued a copy of the retained

Pajpe 13

r / lAAJLa v.-^Yt. r ■•-■-* .-' . -c .r- .SH,*.£..■ j.«.^,> . *, . ^- ■ A . .:.» ^* ■ -, - . ■- ..-i ^.^■i.-i.i. --;-■.■.? -■■•.w :.-.£.. ^ /^ fcg _.;:.., .^ .. -... r. « •..« '„j.Tfi-j.'.-.j ?^_r,.

result can be located and retimed (thi* is done by the process that would normally have executed

the request in the called object). If none is found, a restart-mode request is rejected. The cocrdi

nator performing the restart deduces from this that normal execution shculd resume.

The storage overhead associated with our method is low. Retained results can be discarded

when the parent of a subtransactjon commits or aborts, retaining its own result, or when the top-

level commits. On the other hand, since top-level statements are ro-executed during restart, die

results of the top-most action in suds a statement must be retamed. Also, if a resilient object

takes external actions like moving a robot arm, the robot arm must provide a function equivalent

to a retained result - for example, a way that the device driver can determine the command it last

executed and in this manner identify a duplicated command (a minor restriction since most devices

of this sort contain microprocessor ted memory).

While restarting, it is not enough for the new coordinator to determine the results returned

by operations that were previously executed. The serialization order must also be the same as was

used before the failure - otherwise, the values read from resilient data ite:n$ by ihe üew cocrdsna-

tor might differ from those read by the previous one, agia leading to inconsistendes. ISIS

addresses this issue by replicating both read and write locks, so that after a failure the new coordi-

nator holds all the locks acquired by the previous coordinator beforr it failed Because replicating

read-lock information is potentially ineffidmt, the approach is to piggyback this data on other

messages that could depend on their existence - RFC request* and updates issued subsequent to

the acquisition of the lock. If an RFC or update persists after the crash, the corresponding locking

information persists as well. This information is forwnrded to the new coordinator befors it is

informed of the failure, winch therefore registers the locks prior to initiating restart [Emnan-b].

The reader may be troubled by the apparentiy complex synchronization requirements of this algo-

rithm: read-locks must be tcgistered before restart begins, and the consistency of the system state

must l?c muiiitained after failure. We ^:ow in the next section that ths^e problems can both be

resolved in an elegant manner within the communication primitives themselves.

Page 14

5.1.4. Recovery

If a partial failure occurs, a failed component can recover by dfecarcfing its old state and

copying the current state from some operational component. In effect, the components of an

object act as dynamic backups, eliminatnig the need for stable (dbk) storage. Later, we will show

that the communication primitives can be used to serialize recovery with respect to other opera-

tions. To tolerate total failure, an object must save dieckpoiiit» and committed versiom uf the

object data on stable storage. When the componettts that failed last have recovered [Skeen-a],

they can resume operation from their nable stores; other components use the partial recovery

method.

Some care is needed in dedeäng what information should be placed in stable storage, since

this approach will be costly if access to stable storage must occur frequently. For example, coo*

sider a request to Insert a data item into a complex data structure. The message containing the

request may be tiny, but massive changes to the data stnicturt avid result. If ISIS were to

blindly perform these on a stable representatiori of the stnictme, performance would be very

poor. On the other baud, ;£ ths request itself were legged, tbs object could restart from failure by

replaying the request log. By saving periodic backups of the object state and clearing the log, the

cost of replaying it can be kept small. The cost of updating sud a log will be minor in com-

parison with the cost of maintaining the entire object state in n staole form. ISIS therefore pro-

vides the programmer with a tool for maintaining a log transactionilly. It is possible to log any

RFC request. The capability and arguments are written to the log and later can be replayed by

some other transaction. If a transaction aborts, log entries it has uaae are deleted. A conse-

quence is that the performance of the stable storage mecfaanum is not a bottleneck in ISIS.

5.2. The comnumicadon subsystem

The ISIS ccramunkation subsystem provides three types of broadcast protocol for transmit-

ting a message reliably from a sender process to some set of destinations. The pr^tcxls are

atomic in an "all or nothing" s%* «— .^Kiw..* fMp/HtMm *. fmmmmtHvm ♦l.i ecsives a ^^s?'-?**?, th'*n "nlf*1*

Page 15

b* *- • ' fc- ■ » • - " '» • » ■ «^ ^ •"•^ .*"" •'• •*■ L% ■'* ',"'*• ,*•■ -% *•■ '.'. : '."., "■,"*. "" ■_' *„ \" ■",.' ".* "."
- s."- A.'^ A.'^-M.'- m.~ *^*~-;d'.J*:-.m'~ »"-, »', *.".- it.m. ■* -*- ■*■ '-& ■■» ^in^ii

it fails, all operational components will receive it. Atomic broadcast has often been proposed as a

basic primitive from which higher level system services can be constructed, and several protocols

far realizing such broadcasts have been reported in the literature [Schneider] [Chang] [Cristias].

Unfortunately, although the number of packets transmitted to deliver a message is low in the pub-

lished protocols, the latency before message dr!'«ery takes place is potentially high in comparison

to average intersstc message transit times, primarily because they oof cm» a global message

delivery ordering in addition to the atomicity property given above: broadcasts are received in the

same order everywhere in the system. Such strong ordering is only needed rarely in ISIS. To

overcome this problem, our protocols achieve varying degrees of order, and have latency that

varies accordingly. Moreover, unlike the previously reported work, our protocols are integrated

with a mechanism for dealing with failure and recovery at the level of individual processes. We

now summarize our approach, but omit the detailed protocols and conectness proofs, which can

be found in [Birman-c]. Fig. 1. illustrates a scenario in which two clients interact with a proems

group while its membership changes dynamically, the interactions are labeled with the type of

primitive that would probably be used

aim Comwitiooni

OeCAJTOj ^

CJCASr Ciami

OSCAiT Afsill

I V

Fig. 1: Two dlonts tnterart with a procni gnmp uaicg the bro&dcaat primitives.

Pag* 16

.-: ->-*..•- . .-. - .-, . .;. . -.., ■.'^^'.■.. . . -« - r.kJk ■itaiili^-'1 -»■■■"■--* ^-* - *^ ■^*-| -"^ ->- -'■ - * -A-J"« -^ I . -A*. * -» ■».;•.- f, ^ ■ - -".^ < .-*> a - * - >■ ^.J.. -..£-:

5.2.1. BmdcMt priuiUlvcs

The GBCAST primUh«

GBCAST (group broadcast) is the most constrained, and costly, of the three primitives. We

will say that the operational comToncnts of an object form a process grvup. GBCAST transmits

information about failures and recoveries to procas group members. A recovering compone st

uses GBCAST to inform the operational ones that it has become available. Additionally, when a

component fails, die system arranges for a GBCAST to be issued to group members on its behalf,

informing them of its failure. Arguments to GBCAST are a message and a process group identif-

ier (a capability on the resilient object), which is automatically translated into a set of destinaticm.

Our GBCAST protocol ensures that if any process receives a broadcast b before receiving a

GBCAST g, then afl overlapping destinations will receive b before g. This is true regardless of the

type of broadcast b. Moreover, when a failure occurs, the corresponding GBCAST message is

delivered after any other broadcasts from the failed process. Each component can therefore main-

tain a view listing the membership of the process group, updating it whan a GBCAST is received.

Although views arc not updated simultaneously (in realtime), all components observe the same

sequence of view changes. Moreover, aO components will receive a given broadcast message in

the same view4.

Intuitively, the view represents a logical state in which the message arrived simultaneously at

all available components. This may not be the same as the set of operational components,

because some may still be executing the recovery algorithm (Sec 5.3.2). A ccüiponent of a resi-

lient object can take advantage of this to pick a strategy for processing an incoming request, or to

react to failure or recovery without running any special protocol first. Although tbsss other com-

ponents may not have received the message yet or observed the failure or recovery, smce the

"A problem arises with this, definition if a process p fails without receiving some message after that iMssage has
already been delivered to some oiher process q q'i view would show p ^Q be operaticnal, hence, q will assume that p
received the message, although p is physically iaeapable of dc.ng so. Hawever, the state of the system is now
equivalent to aw. in ihi±p did receive the rarssage, but failed before acor.g on it. In effect, there exists an ,;nterpre-
taLcD of the actual system state th2t is consistent with q's assumpticn.

Page 17

AJ--. L.^A... . .x-^^^..'.^. ^^^'-.V^.V, f

broadcast primitives are atomic they will evcatviUIy do so, and since the CBCAST crdering is the

same every«'here their actions will all be consistent. Notice that CBCAST provid«» on inespasive

way to determine the last site that failed: process group members simply record each new view on

stable storage; a simplified version of the algorithm in [Skecn-a] can thus be executed when recov-

ering from failure.

Tki BCAST prhniuve

The GBCAST primitive is too costly to be used for general conmunkaiion between the xiro-

cess group members that make up a resilient object. This motivates the introduction of wui'ier

(less ordered) primitives which might be w>ed in situations where a total order on broadcast mes-

sages is not necessary. Our second primitive, BCAST, satisfies such a weaker constraint. Specifi-

cally, it is often desired that if two broadcasts are received in some order at a common destination

site, they be received in that order at all other common destinations, even if this order was not

predetermined. For example, the ISIS heap facility maintains replicated allocation ami free lists

for each transsction by transmitting each heap operation to aO copies; since the operations cro

done in the same order everywhere, the lists are mutually ooosfctent. The primitive

BCAST(msg, label, dests), where nag is the message and label is a string of characters, provide

this behavior. Two BCAST* having the same label are delivered in the same order at all common

destinations. A BCAST having the label '•' is oidered with nspect to all other BCASTi. On. ihr

other hand, BCAST'i with different labels can be deliv-red in arbitrary order. This relaxed syn-

chronization results in potentially better performance.

The OBCAST primitive

Our third primitive, OBCAST (ordered broadcast), is weakest in the sense that it involves

less distributed synchronization then GBCAST or BCAST. OBCAST(fnsg, dexts) atomically oelivcrs

msg to each operai jnal dest so that if one process sends multiple messages to the Htme destina-

dun, they are delivered in the order they were sent. Delivery ordcrinÄ is unconstrained if two

broadcast originate in different processes or arc issued concurrently within a single process. More

Page 18

.-AV..> ,.• -.V , -V-^-V ■.v-----^-^

specifically, if there exists a chain of message transmissions and receptions or local events by

which knowledge could have been transferred from the point at which the first broadcast was

issued to the point at which the second one was issued, we consider the broadcasts to be potentialfy

causally reka d, and the deiivcry ordering wiD respect the order of transmission. For causrf"

independent broadcasts, the delivery ordering is not constrained

OBCAST '» vahtahle in ISS beuBise realnent objects cirsplay CBBBEHWaey ocutrd aigodttai»

for distributed syncfaramzadoEL A oomequeace L« that it two oomputarioM communicate con-

currently with the same process, the messages are almost always independent ones that can be

processed in any order: othtrwise, concurrency control would have caused one to pause until the

other was finuhed. On the other hand, order is dearly importaat within a causaUy-linked series of

broadcasts, and it is prodsely ties sort of order that OBCAST respects.

5.2.2. Other broadcait abitractiosi

A weaker broadcast primitive is reliable broadcast, which provides aU-or-aothing delivery,

but iK) ordering properties. The formulation of 03C ST in [Birman-b] actually indud^s a

mechanism for performing broadcasts of this sort, hence no special primitive is needed for the

purpose. Additionally, there may be situations in which BCAST protocols that also satisfy an

OBCAST ordering property would be valuable. Although our BCAST primitive could be changed

to rcsp-ct such a rule, when we considered the likely uses of the primitives it seemed mat BCAST

was better left completely orthogonal to OBCAST. In situations needing hybrid ordering behavior,

the protocnls of [Buman-b] could ca-uly be modified to implöneat BCAST is terms of OBCAST,

and the resulting protocol would behave as desired.

5.2 3. Syncfaronooa vcraoa avynchronooa bnndeast ahstractloni

Many systems e-npliy RFC internally, as a lowest level primitive for interaction cetween

processes (this type of RFC should not be confused with the high-level RFC primitive used to

couimumcate with and between resilient objects). It should be evident that all of our broadcast

Page 19

fc^->::-^--^

primitives can be used to iittplemen! replicated remote procedure calls [Cooper]: the caller would

simply j.;<v'sc until replies have been received from all the participants (observation of a failure

constitutes a reply in this case). We term such a use of the primitives synchronous, to distinguish

it from from an asynchronma broadcast in whicfc no replies, or just ooe reply, suffices.

In ISIS, GBCAsr and BCAST are normally invoked synchronously, to implement a remote

procedure call by one component of an object on ill Jic members of its process group. However,

OBCASt, which is the most frequently used overall, is ahnost never invoked synchronously.

Asynducncui OSCASTs sre the source of most concurrency in ISIS: although the delivery order-

ing is assured, trar-mjssion can be delayed to take advantage of piggybacking or to schedule I/O

within the system a a whole. While the system canrot dei'd such a broadcast indefinitely, the

ability to defer h a little, without delaying some computation by doing so, permits load to be

smoothed. As observed above, although concurrency is introduced by the primitive, it mpects

the delivery orderings on which a computation might depend, and is ordered with respect to

failures, so this concurrency does not complicate higher level algorithms. Moreover, the protocol

itself is extremely cheap.

A problem is introduced by our decision tn allow asynchronous broadcasts: th- atomic recep-

tion p/cpc.ty must now be extended to address causally related sequences of asynchronous mes-

sages. If a failure were to leave a "gap'' in such a sequence, such that some broadcasts were

delivered to all their destinations but others that precede them were not delivered anywhere,

inconsistency might result even if the destinations do not overlap. We therefore e^end the atomi-

city property as follows. If process r receives a message m from pieces ;, nnd s subsequently

fails, than the state of f may depend on any message m' receivrd by s before it sent f% There-

tore, unle«« t fails 33 well, m' must be delivered to it; ■ cmaining destinations. The cost of the pro-

tocols are not affected by this dungs.

A second problem arises when the user-level implications of this atomicity rule are con-

sidered. In the event of a failure, any suffix of a sequence of aysnehronous broadcasts could now

Paee20

be lost and the system state would still be iatsmaDy consistent. A coordinator that is about to

send a top-level reply or take some action that may leave an externally visible side-effect vül

therefore need a way to pause until all such broadca'ts have actually been delivered. For this pur-

pose, a Boali primitive is provided within the object specification language. Notice that cocasional

calls tu Omt do not eUminate the benefit of using OBCAST asynchronously. Unless the system

hak built up a ocnmderable backlog of undelivered bttrjjcsst mesng«, whtch should be rare, Suah

will only pause while transmission of the last few faroadcasts completes. Iluti is automatically

invoked when a log entry is written.

5.3. F suit tofarwat tni|ilenientatkui of selected operiJtlooa

In this section, implementations are desciibed for some of the operations that occur most

frequently within ISIS, using the priit«.tives given above. In the interest of brevity, only a small

subset of ISIS is presented.

5.3.1. Object InvocaÜaa and nqsat processing; commit and abort

To issue a request to an object, a task first generates the transaction id under which the

desired operation should be ezecuted. If a non-resilient process is performing the RFC, a new

top-level transaction is created and a unique identifier is assigned as its HD. If a task with TED i

does a series of RFC's, TDD's for the resulting subtransactions are formed ay extending i with an

index: x.l, x.2, etc. The branches of a cobegin are assigned TED'S in the same manner. Finally, if

a toplevel statement is executed, a HD is generated as for a subtransaction but the prefix is

lagged as a top-level event.

Having determined the HD, the caller asynchronously OBCAM"* the RFC to the com-

ponents of the destination object. A capability managemmt facility translates the capsbüity into a

list of process addresses for transmission3. The caller then waits for a single reply, which could

come from any cemponent of the object, or even arrive in duplicate because of failures.

5An inexpensive protocol to nwtain a cache of group addressing infarmaaon, updsiug it if it is :cvr.d to be out
', of dace during message transnassion, is given in [Hman-cj.

P««e21

Duplicates are discarded

Upon receiving the RFC, a component must determine if it is the coordinator. All com-

ponents of each object are statically ordered by site number into a ring. A component computes

its ranking as the distance along the ring from the site where the RFC originated; the coordinator

is defined to be the lowest ranked opäratinna] componmi. This tends to place the coordinator at

the same site as th» originator, which is desirable: because it minimizes the latency incurred before

a result can be returned. The new coordi&dtar returns a retained rts-H if one is found. Other-

wise, it executes the new request and asynchronously OBCASTi the result to the caller and its

cuhorts. A cohort watdifts the coordinator for failure, «hich it detects by reception of a CBCAST

message, and recomputes the ranking if one occurs. Since all components have the same view

when an RFC is received, and aD subsequently see the same sequence of failures and recoveries,

the computed rankings are mutually consistent. Notr that all necessary tvndtronization is pro-

vided by the communication primitives.

Now, comider task termination. For each task, a capability list (CUST) is maintained, con-

taining the capabilities of objects whose components should be ir'orracd when the task commits or

aborts. The coordinator uses OBCAST to asynchronously send a commit or abort message to the

objects in the CUST. A CUST is initially empty; a capability is added when an RFC is issued to

an object. Additionally, when a reply is recdved from a committed subtransaction, the OiIST for

that subtransaction is piggybacked on the reply and merged with that of the caller (unless the sub-

transaction executed in a topierci statement, in which case its CUST is discarded when it com-

mits).

On reception, a commit or abort message for transaction 7 is delayed if some subtransaction

of 7 is still active. This make« it possible for a subtransaction to reply to its caller before issuing

its own commit or abort, a tactic that reduces latency and ensures that at least one copy of the

reply will reach the caller (a duplicate might be sent if the coordinator fcib after »ending tlia reply

but before sending the commit) After all ?ubtransacticns have tcrmmatsd, retained results

Page 22

corresponding to 7 are >ideted, and the local lock manager and version-stack managers are

informed of the event. When a UB is ir«eived, if the coordinator is doing a restart it waits untii

restart la completed (to ensure that the CLIST is accurate). Since restart is done without blocking,

it will terminate. Km is then forwarded to any active subtransactions, and an abort is perfonred.

SJ.2. Recovery from partial fiuhnre«

To initiate recovery, a oomponsnt issues a GBCAST to the operational components of the

object to wmcfa it belongs. When thb mes&ge is received, nxy cemposeot tnasfers its state to

the recovering one: since the states of the operational cumponsnts are determined by the messages

they have received, and each has received the «one set of messages, all ere in the same (logical)

state. This GBCAST can thus be thought of as a synchronous RFC that returns the current state

of the 'ibject and has the side- - iect of modifying the process>group view to indude the recovered

component. The total ordering of GBCAST with respect to other broadcasts provides all the

necessary synchronization.

5.3.3. Managing repUcated kick«

The locking facilities discussed earlier are easily implemented using our broadcast primitives.

A read-lock is first obtained locally by the coordinator of a computation. Then, a read-lock regis-

tration message is asynchronously OBCAST to the other copies of the data item. The coordinator

immediately continues execution, as if its read-lock were already replicated, although the message

may not actually have been delivered anywhere. If the coordinator fails and any process hod

received a message m sent after the lock acquisition, the read-lock will be registRred before the

failure can be "detected" by the cohorts managing other copies of the lock. This follows because

the read-lock registration precedes m and Lence must be u-Jivered despite the failure, whereas (by

definition) the GBCAST follows m and hence must be delivered after the lock registratiün.

Because the read-lock rcgiitration message is small and asynchrcnous, piggybacking such messages

on outgoing updates and RPC messages is particularly effective.

P*ge23

Unlike a read-lcrk, a write-Iock must be granted explicitly by aD components of an object,

except in certain special cases6 described in [Raeucfale]. Moreover, a write-lock recriest can be

performed correctly whether or not other oroadcasts issued by the cemputatien have been

delivered, hence the request is not subject tc the OBCAST type of oidcnüg constraint. Note,

though, that if two write-lock requests are issued concurrently (on the same item), they could

deadlock simply by being granted in different orders at different sites. Uns is just the type of

ordering problem addressed by BCAST. To ««quire a write-lock. the request is synchronously

BCAST using the identifier of the data item as a BCAST label. If a component fails during the

protocol, the caller withdraws the partially acquired write-lock and then rerequests it. Since the

read-lock registration message preceded the GBCAST anncundng the failure, either it is delivered

before the GBCAST, or no site received a message from a failed coordinator after it obtained the

lock. Because of the withdrawal rule, the write-iock is rerequested after the GBCAST message u

received, so it will be forced to wait if the coordinator held a read lode and that lock survived the

crash. Moreover, since BCAST is delivered in the same order everywhere, concurrent write-lock

requests will not deadlock.

5.3.4. Updating npttcated data

Read operations are satisfied from the version stock for the local copy of the data item being

accessed. Three implementations are supported for write operations.

Synchronoos update.

For this method. OBCAST is used to synchronously transmit the new value to all operational

components. The method is only used for experimental evaluation of the effect of asynchronous

data tran^mbsion on performance, as reported in Sec 7. Note, however, that if ISIS used a

quorum replication luethod, both read and write operations would effectively hs synchronous.

Thus, the perf^Tnance of synchronous update sheds light on the performance attainable with a

The most impcavant of these is ttut, since cocrdinatars far a single tramactioD are run a: the same site, after a
transacticn has acquired a distributed write lock on an item x, its subtransacticxu need only lock x locally.

Page 24

RtMVtfh • k_l at •_-. M_-. ■.i - • *• ■ • i----. .■.. --■'-'-■'-«-■«--■»<. -..>,■.„■,,-,-, -...,. ..i .,>.<. t.. i. t. ä . ._, « - »- « - « - v _ . - » ■■^J J!-..X-

quorum replication msthod.

Coacnrrent npdais.

Although synchronom update is concep.ually simple, costly delays are iocurred while waiting

for acknowledgements. Using concurrent update, data are u;'dated locally by the coordinator,

which issues an t lynchroraus OBCAST to inform its ootu rts [Joscph-b]. An asynchranous

OBCAST is also used to commit, at which time lock? are released. Since the updates precede the

commit and OBCAST respects this ordering, any process that obtains s lode will observe the

correct version of the data it reads. Thus, the semantics of the synchronous update are preserved

but, if few write-locks are needed, the response time is limited by th, loco/ execulion speed of ihe

request! Recall that when anvurrent update is in use, it may be nccess'cy to invoke flnah before

returning a result from a top-level operation or taking an action with external side-effects.

Deiiyed npdate»

Thr concurrent update schone assumes a pessimistic write- locking algorithm, which waits for

responses from all operational components each time a wr.tc-iocK is needed. Pessimistic locking

permits the programmer to design a deadlock-free object and hense to implement objects that take

irreversible actions. However, better performance can sometimes be obtained using an optimistic

locking algorithm together with delayed updating. Write-locks are acquired locally by the coordi-

nator, which queues update messages but does not transmit them. When the transaction is

prepared to commit, it attempts to acquire these write locks from its cohorts using the protocol of

Sec. 5.3.3. Trie transaction aborts (discarding its queued updates) if deadlock would result. Oth-

erwise, it transmits the updates using OBCAST.

Using delayed updates, the possibility of an occasional abort is accepted as m alternative to

Issuing multiple write-lock requests -- only one distributed ooncuircacy control action is needed,

and it occurs at the end of the transaction. Moreover, other transactions can read old versions of

any data items being updated (but only at remote sites) and multiple updates could be sent in each

message. These benefits have a cost: large amounts of buffering may be needed to support the

Page 25

■",-* '•-'- *-;r-f *-?,* ' y r ."r «.in.fr »f,«",?, ^ j-«-»■- .-V»n.-ISJA^ >-.I..—;!,.;-—Y^"?--/ - n.^l^-\ ^ »-- ,. - i . ,- .. J -'; . ; -'- -'.! -_-—'• . j -"i^Jj. ■»J.-'e^^ ■

technique, snd irr^fnible actions are precluded. The ISIS prototype will be used to compare

delayed and concuireüt update in the future.. Both update methods have been proved correct for

objects that use umflict-serializability as a corroctness cocstramt [Josepb-a]. An open problem is

to investigate the applicability of these techniques in system which employ other correcüjcs? con-

straints.

w. r ^itTnt arrhitjfiiira and hyl—tWM I

6.1. OWBHBMWliOM pitalBfM

We now summarize the architecture and implementanon of the ISIS communication subsys-

tem. The primitives are built in layers, starting with a "bare" network providing unreliable

datagrams. A site-to-site acknowledgement protocol converts this into a sequeaoed, error-free

message abstraction, using Smeouts to detect apparent failures. An agreement protocol is then

used to convert the sits-failures and recuveries into an agreed upon ordering of events. If

timecuts cause a failure to be detected erroneously, the protocol forces the affected site to

undergo recovery.

Built en this is a layer that supports the various primitives. OBCAST has a very light-weight

implementation. Each process buffers copies of any messages needed to ensure the consistency of

its view of the system. If message m is delivered to process p, and some message m' precedes m,

a copy is sent to p also. Thus, if any chain of process to-proccsa interactions leads to the intended

recipient of a message, the message wül tra d down that chain and can be delivered (duplicite

copies are discarded). An inexpensive garbage collector tracks down and deletes superfluous

copies after a iüc^agc has rsashsd ill its destinations. By using extensive piggybacking and a sim-

ple sdieduling algontLm to control message transmission, the cost of an OBCAST i* kept low -

often, less than one packet per destination. BCAST employs a two-phase protocol based on one

suggested to us by Skeea [Skeen-b]. This protocol has higher cost than OBCAST because deliver,'

can only occur during the second phase; BCAST is thus inherently synchronous. Recall, however,

that ISIS uses BCAST primarily for write-lock acquisition, which can be done rarely. Moreover,

Page 26

p * ■» 4." O ■L'1 ■ * v * •• ■■ «i •! , * k * fc «■ . *_* *"

3CASr k only nmkä üfw Gist time a ocapuJation write-lodo a particular? variacJti, Jiibs«qusat

attempts to re-lock it (not uacomaCB in nested transactions) can be handled locally. GBCAST is

implemented mting a two-phase protocol similar to the OK for BCAST, but with an additional

mechanism thax flushes messages from a failed process befait* delivering the GBCAST announcing

the faüure. Although GBCAST is slow, it is used very rarely. Mora details and correctness proofs

appear in [Binnan-c],

6.2. Blgber tewl ■ystem rtmcto»

The ISIS prototype was built under UNIX 4.2. and is organized hierarchically, as illustrated

in Fig. 2. Hie lowest level provides the communication primitives described earlier, together with

a message "editing" subsystem supporting variabls-format messages with symbolkally named

message-fields. BuQt on top of this is the a layer supporting concurrent tasks, monitors for mutual

exclusion, the transactional version stack, the lock manager, the capability manager [Dietrich],

Obiect Specification
Language

High-level Fault
Tolerant services

Capability-
Manager i

i
Namespace Outside

interface

User-Defined
Obiect Types

To.T,,

Obiect create, delete, RPC's, lock acquistion,
read I replicated write, commit / abort, kill

BCAST OBCAST GBCAST

Message
Editing

TASKS
Version

stack,
lock mgr

Transactional
record alloc

Failure Detection
Site Site Communication

Presenfaf/cn Layer

Obiect layer

Fault tolerant
Implementation

Broadcast Primitives

Utilities

Low-level Fachities

| TCP'IP Packet Transport

Figure 1: /S/5 SYSTEM ARCHITECTURE

Psse27

_%' -v,
f--:>:--v>:---y^-^-'^v'-:>>--:.--:.--:.-A^:v- » i A i ..r ^^l-A-

which maps 2 capability on as object to a list of sites where its components reside, the name-

space, which maps symbolic names to capabOiiics, and the interface used by external non-resilient

processes to issue requests to resilicn* objects. The capability manager supporfs dynamic migra-

tion of obpets, although we do not yet exploit this possibility.

We originally feared that processes and inter-proocsi communication would be the dominant

cost factor in ISIS. Consequently, a single system process handles functions oommos to aD resi-

lient objects, and a single "type managet is used for each resilient type. A type manager multi-

plexes its time between the different instances of its type residing at the site where it is executing;

these in turn multiplex their time among currently active tasks. Process creation occurs only when

a new type manager must be started (this idea was suggested in [Lazowska].) Commands to

interactively load and unload type managers (e.g. when a new type is defined) are provided by the

system process.

In retrospect, we feel that the decision to multiplex type managers was an error. The

increased code complexity required to keep separate copies of the various data structures used in

the type manager for each instance was not justified by the reduced overhead that result««! In

any future version of ISIS, each object will be represented by a single process at every site where

it resides and the runtime system will be fragmented into multiple processes: a process group

manager, a protocols process, a failure detector, communication buffering processes, etc. We now

believe that this would reduce complexity and that adverse performance impact can be minimized

with careful tuning. We also believe that if ISIS is to perform well, it must be moved away from

UNIX, and are planning to do so in the future.

7. Performance of the prototype

A prototype of ISIS has been operational since January 1985. Performance is reported for a

duster of SUN 2/50 workstations interconnected by a 10-Mbit cthemet (Table 1). Our approach

was to evaluate the performance of the communication primitives, the response time for some

simple resilient objects, and the overall response time of the system when presented with

Page 28

concurrent requests at multiple sites. The indexed sequential file, built from a resilient directory

and a resilient file, illustrates the overhead associated with nesting.

When we instrumented ISIS, we discovered that the perfcrmanoe of our IPC connections was

suboptimal, primarily because the version of UNIX we used did not support changes to the IPC

buffer size, which was consequently too smaO to permit effective "windowing". We lacked the

GENERAL PEÜFCAMAN-CE COMPONENT TESTED SUN2/S0
Site-to-site raessage 8»
Process-to-process message Delay to recepticn 10ns
RPC to object, same site Delay until task starts JUHS

Version stack: BEGIN/CUMMTT 19m
(volatile) BEGIN/READ/CCMMTT

BF.GIN / WRITE / OCWMTr
20na
23™

(stable) BEGIN/OCMMTT
BEGIN / READ / COMMIT
BEGIN/WRIXE/OOMMTr

467™
493»
680»

Acquiic local lock 0.7™

COMMUNICAUON PRIMmVES Itlte 3 «lie» 6 »It«
Failure detector TlRWOUt n.a. 7s«a 7sec$
GRCAST Delay vir.J. delivered n.a. 2 sea 3secs
OBCAST Latency lOmi 32m 44»

Turnaround ISm]65na 360»
Tiuuiighput (one task) 10/sec 6/sec 3.5 / sec
Effective Throughput 35/sec 24/sec 17/sec
System Throughput > 100/sec 18/sec 10/Mi

BCAST Latency 10ns 180» 240»
Turnaround 20» ISC» 360»
System Thrcughput > 100 / sec 20/sec 12/sec

Write lock Delay to acquisition 30>» 220m. 400»
Log manager Write log record i5rm 225» 410»

RESILIENT OBJECTS*
Resilient file REAP 13/sec 11/sec 11/sec

WRITE (synchronous) 4,2 / sec 1.27 / sec .75 / sec
WRITE (concuirent) 12.5 / sec 11/sec 9/sec

Resilient directory BIND (synchronous) 2.9 / sec .9/sec .57 / sec
BIND (corcurrent) 6.3/sec 6.3/sec 5/sec
LOOKUP (read only) 11/sec 10/sec 11/sec

Resilient stack PUSH (synchronous) 2.7 / sec 1.1/sec .52/sec
PUSH (concurrent) 9.2 / sec 9.3 / sec 9.6/sec
PUP (synchronous) 3.3 ' sec 1.7/sec 1.0 / sec
FOP (concurrent) 9.2/sec 10.3 / sec 8.9 / sec

Indexed seq. file INSERT (synchronous) 1.6'sec .52/sec .3 / sec
INSERT (coccumnt) 3.8/sec 5./sec 2.3/sec
LOOKUP 9.5/sec 9.5 / sec 9.5 / sec

Partiil recovery mode.

Table 1: Performance in the ISIS Prototype

»age 29

«." O O O -v » ' ■ '■ O O • 1 «■•'-' «
^r_»^_«^» '.^

resources to correct this problem.

The first set of figures addresses perfonmmce of the version store and lock manager. Hiese

show that while the version store is very fast in its in-core partial recovery mode, it degrades in

the disk-based "stable" storage mode. This supports our decision to favor log-based recovery

from total failures, since the use of stable storage is mmmiiTed in this manner. Consequently, die

resilient objebb. tested we^e run in the in-core cacde only.

Hie broadcast primitives are dominated by underlying message-passing costs, but otherwise

depend primarily on the number of phases required In the initial implementation of the primi-

tives, all run in two phases (although the message is delivraed during the first one for OBCAST

and the second for BCAST), hence all the primitives give similar performance. The latency figure

measures the time from message transmission to remote delivery. Because the OBCAST imple-

mentation we instrumented is not identical to the one described in this paper, the OBCAST latency

is very high. Moreover, the latency figure turned out to be very hard to measure: using a 60Hz

line-dock, which is the only one available on our SUN workstations, elapsed time can only be

measured to an accuracy of 16ms. Nonetheless, the OBCAST latency (32ms in the 3-site case) is

much larger than the inter-site latency (10ms). We found that this results from delay associated

with the I/O operation that occurs when an OBCAST recipient acknowledges delivery to the initia-

tor. Additional latency is introduced by the small window size, and the inaccurate dock further

inflates the OBCAST figure. We are confident that after we reimplement the primitives using the

algorithms given in [Binnan-c], OBCAST latency will not be much higher than the site-site latency

of 10ms.

Turnaround measures the delay from transmission to reception of a reply from the remote

task that received the message, and throughput measures the rate at which a single task can issue

broadcasts without waiting for acknowledgements, in messages per second. The effective

throughput is 3 to 5 times higher than this, because concurrent update permits multiple update

messages to be piggybacked on a single packet (notice ihat the effective throughput decreases

Page 30

&".,> '■ f\ Vif V.V.'i.V-^'-"'1-"' '-"'- ^--'V-'-V

mere slowly than the true throughput as the number of sites increases: wfaue waiting for ack-

nowledgments, there is time to generate more concurrent update messages, hence the degree of

piggybacking rises). We also measured the system throughput, which is the maximum number of

BCAST or OBCAST protocols that can be started per second at a site in a steady state (this figure

<»uld be improved by tuning the UNIX scheduling policy). Note that the cost of the protocols

rises linearly with the number of ocstinatiom, as least when the number of destinations remains

small.

Turning to the resilient objects themselves, we see the dramatic performanoB impact of the

concurrent update technique «hen compared with synchronous update. Tuese tests measured the

average cost per opera&m for a transaction doing 25 operations of the <wigimt«f» type. Con-

currency control overhead is higher for the first operation than for mbuquBit ones, which the sys-

tem recognizes as being "covered" by previously acquired locks. The amortized cost is therefore

low, permitting bursts of 10-12 operations per-second even when updating was bung done (again,

assuming an otherwise idle system). The fact that concurrent update does better than synchronous

update even in the single-site case is becnue concurrent update is also used to maintain msssage

routing tables in the type managers. Nesting did not introduce any substantial overhead. Within

the system, most time is spent sending and receiving messages and in the object itself, executing

the requested operation.

Finally, we measures the performance of the file object under a distrbuicd load. Con-

currency control was not included, b order to isolate the effect of implication from other factors.

Two types of tests were undertaken. First, we considered a "mixed" transaction that performed 3

reads before doing a write and committing. Tue file object was replicated at 1 and 4 sites, and

varying loads of requests were presented randomly at each site. Figur: 3a shows the mean

response time for several thousand requests, for loads ranging from 0 to * operations per second.

Each curve stops when the system saturated and began to develop a request backlog. A com-

ponent of the file object does two sorts of work when processing these requests: computing related

P^gc31

0.9

0.7

c 0.6 o

- 0.S

J
" 0.4
u

I 0.3
n

0.2

0.1

0.0

' I ii';», mixeii rtads uvi
writes

4 sites

3 4 5 6 7

Load ioperations / sec)

1 site, pure writes

2 3 4 S 6 7 8 9

Load I operations / sec)

Flenrai 3Mb: Rasponrfvcm» of ■ Sir object as a flmdloa of Hi worfciMd

to the coordinattjr side of each operation, and work stemming from its rule as cohort in requests

initiated remotely. The latter involves processing the initial RPC message, the message containing

the data for the write, and the commit; the former involves generating these messages and

interacting with the external dient programs, in addition to executing the operation itself.

The data we plotted was obtained by correlating response time for individual requests with

the times at which read and write requests were serviced by the file object. The overaD load on

the object was deduced by measuring the rate of local reads and writes and adding 4 times the rate

of updates received from remote sites, to account for the 3 reads that were done remotely for

every update sent out. Note that piggybacking makes it possible for a cohort to do quite a bit of

work for each message it receives from the runtime system; in the case of the coordinator this is

generally not the case. It is interesting to observe that except when the load on the object was

very low, response time in the 4-site case is better than that which can be achieved with a non-

replicar object. This effect can be e^lained by the sharing of coordinator and interface related

32

^M^^a^i ■ - ■' k&&&£l^^

activity amaig tlu components of the object. Moreover, the maximum capacity of the object to

perform operations rises from 4.2S operatians per second in the noa-rcplkatcd case to 7 opera»

tions per second. As the load rises, piggybacking increases the efOdency of the system, explaining

why the response time drops from about .25 seconds to .1 seconds fa a typical operation.

We wondered whet would happen if transactions did only writes. Figure 3b shows how

response time varies as a function of load for a transaction that does one write and then commits.

In the single-site case the performance of this transaction is do- J thai for die angle-site mixed

case (writes and reads have comparable local costs); in ail the replicated cases, however, response

time improves as the object is placed under increasing load (the saturation point is approximately

the same, however). This better response time is catplamed purely by the reduced coordinator-

related and front-end work being dons by the system. Of course, the cost of nmniug the broad-

cast protocols rises with the number of sites, and performance would undoubtably drop again for

objects replicated at very large numbers of sites.

The major conclusion to draw from the above is diat when using concurrent update, the

apparent performance of a resilient object accessible from multiple sites can be comparable or

better than for a fault-intolerant single-site object of die same type (our experience with the calen-

dar program supports this). Moreover, overall performance is higher in read-intensive settings,

provided that requests arrive randomly at the different components and the concurrency control

algorithm is good, since reads are done IcraQy. On the negative side, the steadily increasing costs

of the protocols, especially BCAST, suggests that data should not be replicated to more than 3 or 4

sites because concurrency csntrol overhead could become excessive. This has lead us to imple-

ment a data migration mechanism for ISIS, which will be desenbed elsewhere [Dietrich]. Our fig-

ures demonstrate that ISIS is able to provide powerful distributed services at suprisingly low cost.

If an effort were made to tune the ISIS prototype and the objects themselves, perfcrmance could

probably be doubled under UNIX, and further Laproved by moving to a mere streamlined operat-

ing system.

f Paee33

'j.■/■■■ ---■■ .\w. .■■■ •. •'. -f-^ <-J Jit. •?. V. -: -f-S^VIC^I^«V?^/.^ J<_V?A?A. >-\«3^>J»>J?1 'J^k7-i,>:k>>>.> •_. ■ ■ •-.-■• ■-■>-. ..>-■ -,. •--1^J -Jf'_. ■-. • >,

8. Fntnre research

Ths ISIS project is now entering its thiii year. Two major probleans are reodving attention:

medianisim for inorjaing availability during partitioning, and an investigation of the limits of

concurrency in systems subject to ordcring-based correctness onstmnt» Flossph-aj. Smultane-

oualy, we are rramming uses for ISIS in higa-level programming tods, which miypt constitute the

interface to a new generation of operating system srrvioes. Abo being studied ire Vacuities for

dealing with real-time events, replicated processing (as opposed to replicated dam), and demand-

based data migration within k-resiliest objects replicated at more than *+l sites. We would alsc

like to build some sort of application system using ISIS as its base, for «ample a critical care sys-

tem for medical environments [Birman-d].

Resilient object -i too high-level for many purposes. For emnple, if aD updates to a

given variable originate at a single site, there are cheaper ways to maintain that variable then to

adopt a general purpose transaction mechanism. Recognizing this, we now expect to use ISIS in

an environment that would also permit programmers to work directly with fault-tolerant process

groups. Users could then construct fault-tolerant software using whichever tools seem most con-

venient.

A basic problem is that ISIS provides a type of Tvice and exhibits a collection of require-

ments which are very different from those seen in most contemporary distributed programs. For

example, UNIX assumes that interactions between processes will be through RFC or virtual cir-

cuits, whereas communication in fault-tolerant distributed systems is strongly biased towards

broadcast protocols. A result is that UNIX is simply not very good at running our software (the

V system [Cheriton] might bs more reasonable, although we have yet not considered porting ISIS

to it). Clearly, it is beyond nur resources to conduct research into both fault-tolerance and operat-

ing system design. It thus seems appropriate to call for renewed rararch into primitives and com-

putational models at the operating system level, and for greater cooperation between the designers

of these two mutually dependent classes of system.

Pap 34

9. Conchidnm

This paper presented an overview of the ISIS project and reviewed the tecfaniques it uses to

obtain fault-tokrant implementations from abstract type snedt'eatioo-. The ^ood performance of

a prototype supports our belief that the approach will be viable in diverse situations. MCJ cover, a

novel communication architecture leads to a system structure wiiutn which nsrectness arguments

are straightfecwird despite the preseve nf faDures and cerauneaey.

We believe that a new gensration of htgh-leveS computing facilities, mduding ISIS, is now

emerging. Much as virtual memory changed the engineering of very large systems in a fundamen-

tal way, these facilities will fundamentally change the way that distributed software is drvsloped,

and will thereby enable researda in areas for which existing programniing methodologies are

inadequate. As the oompleiity and sheer size of distributed systems oontmucs to grow, facilities

of this sort will be indispensable.

10. Admowfedgement

Wally Ddtrich, Amr El Abbadi, Tommy Joseph, Thomas Raeuchle, and Pat Stephenscm all

mariw many contributions to the work reported here. We are also grateful to Dale Skeea, who

founded the project with us in 1981, and to Fred Schneider for his careful reading cf an early

draft.

11. Referencei

[AllcUnl Allchin, J., McKendry, M Synchrooization and recovery d action», .'noc, lud ACM SIGACTISIGOPS
Principles of Dunnbmmt Computing, Mbmreal, Canada, 1983.

[Bartlctt] Barden, J. A NonScop Kernel. Proe 8th Symposium an Operming Systems PrinctpUs, Dec 1981.

[Bcrastda] Betmtein, P., Goodman, N. Concurrency ccDtrot algorithnB for replicated database systora. ACM
Compmütg Surveys 13, 2 (June 1981), 183-222.

[Birman-a] Birman, K. Replication and fault-tderance in the ISIS system. Proe. 10th ACM SIGOPS Symposium on
Operating Systems Principles. Orcai Island, Washington, Dec. 1985, 79-86.

[Blrman-bl Birman, K., et. ui. In^iefflerting fault-tolerant distributed objects. IEEE TSEII, 6, (June 1985), 502-
508.

[Elnan-c] Birman, K., Joseph, T. Reliable commmicancn in an unreliable environment. Dept. of Computer Sd-

P-geSS

ence, CameU Univ., TR85-694, Aug. 1985.

[Binnan-^.l BL-man, r. ft ai. MDS-1: A database system for medical appiicaticm. In Proc. IEEE Computers and
Cardiology (Sept, 1984), 309-312.

[Blrrell Durd, A., Nelson, B Impiemeatiag remcte procedure calls. ACM TOCS 2,1 (Feb 1984), 39-59.

[Borg] Borg, A. a. ai. A message system supporting fault-toierance. Proc. 9th Symposium on Operating Sys-
tems Principles, Brenoc Woods, NH (Oct. 1983), 90-99.

[Cbandy] Chandy, K nd Lmport. L. Distributed sn^shots: Determimng global states of distributed systems
ACM Trans, on Computer Systens 3,1 (Feb 1985), 63-75.

[Ouing] Chang. J., Maxemchuck, M. Reliable broadcast protoeds. ACM TOCS 2, 3 (Aug. 1984), 251-273.

LO»riton| Cheritan, D. The V Kernel: A Software bae for distributed systeu». IEEE Scfivuan i 12, (1984). 19-
43.

[Cooper] Copper, E Replicated procedure call. Proc. 3rd ACM Symposium on Principles Y Distributed Compw-
in«., August 1984,220-232. (Vfay 1985).

[Criidan] Crisäan, ¥. et at Atonic broadcast: Pram ample diffusion to Byzantine agreement. IBM Technical
Report RJ 4540 (48668), Oct. 1984.

[Dletridil Dieaich, W. Ph.D dissenatiar, farthcaming,

[D El AbbadÜ, A, Skeen, D., Cristian, F. An effidan ffu^tolerant prococd for replicated data manage-
ment. Proc. ^ÄACM5>w?». on TOW, Portland, Qtgrfl, March 1985,215-229.

[B El Abbadi, A, Toueg, S. Availability in pardnoaer'. replicatel databases. TR 85-721, Dept. cf Com-
puter Sdence, Coraeil IMversity, Dec. 1983. To r.oorar: Proc. Sth ACM Symp. on PODS, Besten MA,
March 1986.

[Eswarcnj Eswaren, K.P., et a! The notion ai censisteocy and predicate locks in a database system. Comm. ACM
19,1! (No». 1976), 624-633.

[GewUck] Gawlick, D. Processing "hoc spots" in high performance systoa. Amdahl Corp., Sunnyvale, 1984.

[Glfford] afford, D Wdghted voting far replicated data. Proc. 7th ACMSIGOPS Symposium on Operating Sys-
tems Prinäples, December, 1979.

[Gray] Gray, J. Notes on databaae operating systems. Lecture notes in commaer science 60, Good and Han-
mannis, eds.. Springer-Verlag J,J78.

[HerUhy] Hcrlihy, M A quorum consensusa repticarioo method for abstract data types. ACM TOCS 4, 1 (Feb
1986). 32-53.

[Joseph-«] Toseph. T. Low cost management at repiicasd data. Ph.D. dissenatian, Dept. uf Computer Sdence.
Gmdl Umv., Ithaca (Dec. 1985).

[Joscph-b] Joseph, T., Birman, K. Ix-v cost management of replicated data in fault tolerant distributed synwns.
ACM TOCS 4, 1 (Feb 1986). 54-70.

[Lamport] Larapcrt, L. Time, clocks, and the ordering of events in a distributed system. CACM 21. 7, July 1978,
558-565.

[Lazowska] Lazowjka, E. et ai The architecture of the EDEN «"rem. Proc. °:h Symposium an Operating Systems
Principles, De:. 1981,148-159.

[LISKOV-*] Liskov, B., Zilles. S.N. Programming with abstract data types. SICPLAN notices 12. 2 (Apr. 1974),
50-59.

[Liskov-b] Liskov, B,, Schdfler. R. Guardians and actiens: Linguistic suppest for robust, distributeu programs.
ACAf TÜPLÜ 5, 3 (July 1983), 3S1-404.

[Uloa] Nlxs, E. Nested transacnons: An i^.^-oach to reliable, distributed cnrputuig. Ph.D. thesis, MIT Dept
of EECS,TR260, April 1981.

[Papi] Papariimigou, C The serializability of concunent database updates. JACM 26, 4 (Oct. 1979), 631-653.

[Popek] Popek, G. a a!. Locus: A network transparerr high reliability distributed system. Prcc. 8th Sympo-
sium on Operating Systems Principles, Dec. 1981. 169-177,

[Haeuchle] Raeuchle, T. Ph.D. dissenanon. farthiccmng.

[ScUlctlng] Schlicting, R, Schiieider, F. Fail-stop processors: An appros; dasigmng fault-tderart distnbured

Page 36

•■'-■- <im -- - -^- --- «'jt:.j.'- ^-J'-A'^S-'--»'- -I- »'- »'- A, >'_«•. .•. r". »' «*- ^•- »f--^ »^-

r^ J"" k"VM VW ^- »i * ^ ' ■ ' ^ - - ' ^ " • - » " ." " * ■ « ' -' -" tf-üin

computing system». ACM 7ÜCS 1, 3, August 1983,222-238.

[Schaeidci Schneider, F, Ghcs, C, Schliccing, R. Fault-tderant broadcasts. Säence of Computer Programming 4,
X (Jan. 1984).

[Skccn-a] Skeen, D, Determining the last proreu to fail. ACM TOCS 3,1, Feb. 1985,15-30.

[Sluen-bl Skeen, D. A reiiabic oroaocasi prococd. Unpubluhfd.

[Spector) Spector, K,aal Distributed cransactioos for reiiabie system. Proc. 10th ACM SIGOf'S Symposium on
Optraing Systems Principles, EVc. 19a^. 127-146.

[Strong] Strong, H. R.. Doiev, D. Byzantine agrecmeni. Digest afpaptn. Spring Compcon 83, San Frandsco, CA,
March 1983, 77-81.

[Svobodora] Svobodova, L. Resilieot dütriluted ctinpurin|. IEEE TSE TSE-10, 3 (May 1984), 257-268

[Toucg] Touef, S., Brboogiu, O. Ob the optical checkpoint selection problem. SUM J. Computing 13 3 (Aug.
1984).

iWeli-1; Weihl, W. Data dependent aiDCurrency controt and recovery. Prx. 2nd ACM SICACTISICOPS Sympo-
sium on Principles of Distributed Computing, Mcntreal, Canada, August 1983, 63-75.

Page 37

*• .' h7 -■ .p.>■-•..• AXJfv^-.,''J>- AJ.'-^ y' Ü - * - -
\.N_.'. , ••• -■ .' .■•,'.• ■,■ v v ',■ y ■«• v -> ■ ■ -

